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The anharmonic oscillator: perturbation series for cubic
and quartic energy distortion

J E Drummond

Department of Applied Mathematics, Science Faculty, Australian National University,
Canberra, Australia

Received 1 December 1980

Abstract. Twenty five terms of the perturbation series are calculated for the first five energy
levels of an oscillator with Ax* energy distortion and a similar calculation is carried out for
the first six levels for Ax> distortion. For the positive quartic the alternating series is
summed using the Aitken §, transformation for A from 0.1 to 100. An exponential integral
model and a truncated binomial mode! are used to transform the series for negative
distortion energies, and the complex energy eigenvalues are calculated for (—A) from 0.01
to 1.

1. Introduction

The harmonic oscillator in classical and quantum mechanics is a rare phenomenon, but
it is a basic first approximation to a wide variety of small-amplitude anharmonic
oscillating systems. If the potential energy of an oscillator can be expanded as a power
series in x, where x is the displacement from the minimum position, then the potential
energy has the form

V=V,+Ax’+Bx>+Cx*+....

The constant A is positive for a harmonic oscillator. The next most important term is
the cubic term for an asymmetric oscillator or the quartic term for a symmetric
oscillator. Hence these two terms are worthy of study. So far the positive perturbations
have been studied in some detail, but the negative perturbations have received
somewhat less attention.

The energy levels of the Schrddinger wave equation,

(=d?/dx?+x*+Ax™)y = Ey, (1)

have been calculated by Biswas et al (1973) for eight energy levels for m =4 and two
levels for m =6 and 8, for A from 0.1 to 100. Their method was to find the zeros of
determinants which converge to the Hill determinant. Ginsberg and Montroll (1978)
have shown how to use good approximate wavefunctions to calculate the energy for all
positive A. Bazley and Fox (1961) have also found rigorous upper and lower bounds for
the lower energy levels for m =4.

Bender and Wu (1969) have calculated 75 terms of the ground-state energy
perturbation series for the positive quartic energy perturbation and have demonstrated
that the ratio of successive terms increases linearly. This means that the series is similar
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to the asymptotic series for the exponential integral and that the radius of convergence
of their series is zero. However, Simon (1970) has studied the analytic properties of this
series and its Padé approximants (Padé 1892), while Graffi et al (1970) have used both
Padé approximants on 40 terms and Padé-Borel approximants on 20 terms for A (their
B) from 0.1 to 14, to calculate energies. These agree with the results of Biswas et al.

The following calculations show that convergence speeding of the asymptotic series
for positive quartic distortion gives an unbiased sum up to at least A = 50. On the other
hand, rounding-off errors starting with 16-figure accuracy cause the accuracy to
decrease from 14 figures at A = 0.1 to two figures at A = 50.

Calculations of the negative quartic and cubic distortions are also made, using the
direct perturbation series together with an improved truncation based on the exponen-
tial integral. An even better method is a truncated binomial transformation (Drum-
mond 1981), which has been successfully used to find exponential integrals in the
shadow of their singularity and also to find complex energy levels in the Stark effect.

2. Perturbation series for quartic and cubic distortion

We wish to find the eigenvalues E(A) of the differential equation
(—=d?/dx?+x%+Ax™)Yn(A, x) = Ex (A )Yn (A, x) (m=3,4,N=0,1,2,...)
with the associated boundary condition

liriuao Un(A, x)=0.

To do this we set

Un (A, x) = expGx ) [no(x) + A1 (x) + A 2Yna(x) +. . ]
and

EN(/\)=2N+1+/\EN,1“A2EN,2+/\3EN,3'—.... (2)

The first 25 coefficients of equation (2) for the quartic distortion for five energy
levels and 20 coefficients for the cubic for six levels were computed, extending the
method of Bender and Wu (1969, p 1233) using 8- and 16-figure accuracy. These two
calculations agree mostly to six figures, so the higher-precision calculation was trun-
cated at 14 figures, except for the coefficients for the last two cubic energy levels. These
agreed to four figures, and so were truncated at 12 figures.

For the quartic energy distortion oscillator, the values of Ex, are given in table 1,
while for the cubic energy distorted oscillator, the odd coefficients are all zero and the
values of En, are given in table 2.

3. Energy levels for quartic distortion and positive A

Graffi et al (1970) calculated Eo(A) using the series of Bender and Wu (1969). They
found that the Padé-Borel transformation was more rapidily convergent than the Padé
transformation, and noted that the diagonal Padé approximants tend to a constant for
large A whereas Eo(A) ~A '/ for large A.
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Table 2. Values of the unperturbed energy level, En o, and some non-zero coefficients, Ey;
in the perturbation series (2) for the first six energy levels of the oscillator with cubic energy
distortion. The figure after the comma is the power of 10 multiplying the number.

r Eo (Eo1=1) E{(E10=3)

2 0.687 5 , 0 4,4375 , 0

4 1.816 406 25 , 0 2.197 265 625 , 1

6 9.694 580078125 , 0 2.0203588867187 , 2

8 7.343 5993194580, 1 2,476 413288 1165 , 3
10 7.0202156996727 , 2 3.636194 4868326 , 4
12 8.009 464 0542939 , 3 6.0857234945912 , 5
14 1.0565943104322 , 5 1.1295562157504 , 7
16 1.579 3884575006 , 6 2.2865590991511, 8
18 2.637 6801438643 , 7 4993837044 5565 , 9
20 4.869 8036617068 , 8 1.168 094 2272910 ,11
22 9.8559727014007 , 9 2.911227 3146578 ,12
24 2.171426 8111984 ,11 7.7019900564719 ,13
26 5.176 557787 4394 ,12 2.156 889 659 809 4 ,15
28 1.328 329756 386 8 ,14 6.379 308 5757893 ,16
30 3.6518983124530 ,15 1988928399 1882 ,18
32 1.0712104754797 ,17 6.525 8266237623 ,19
34 3.340 063 5256389 ,18 2.249798 8129858 ,21
36 1.103 314 6837805 ,20 8.137468 6393134 ,22
38 3.8493751158581 ,21 3.083 4002595360 ,24
40 1.414 594 4754059 ,23 1.222164 6537172 ,26
r Ez,:(Ez,o= 5) Es‘r(53,0=7)

2 1.19375 , 1 2.31875 , 1

4 9.169 921 875 , 1 2.440429 6875 , 2

6 1.2649704589844 | 3 4.5550021972656 , 3

8 2.2619459896088 , 4 1.0890179998398 , 5
10 4,729 8272851682 , § 3.0109916025302 , 6
12 1.103 3528065307 , 7 9.190755084 8866 , 7
14 2.798 3883187375 , 8 3,020 0458013298 , 9
16 7.596 7343389386 , 9 1.052 129304 8447 ,11
18 2.184 9583490308 ,11 3.847703743 0638 ,12
20 6.612 1001097434 ,12 1.467 077 2453026 ,14
22 2.095074 294 4036 ,14 5.8039309304247 ,15
r E4,,(Ea,o=9) ES,r(ES,0= 11)

2 3.81875 , 1 5.69375 , 1

4 5.1205078125 , 2 9.287 6953125 , 2

6 1.210 68869629 , 4 2.66336325684 , 4

8 3.64581424656 , § 9.697 18598728 , 5

10 1.262 55928017 , 7 4.047 624 36334 , 7
12 4.80071832172 , 8 1.849278 48506 , 9
14 1.954 666 212 50 ,10 9.019410557 12 ,10
16 8.394 116 31960 ,11 4.62555116803 ,12
18 3.764 73724145 ,13 2.469 954 146 60 ,14
20 1.751521 30030 ,15 1.364 027 46075 ,16
22 8.412 434314 36 ,16 7.753 006 489 04 ,17




The anharmonic oscillator 1655

This last comment is not surprising, since the diagonal Padé approximants [N, N]
are the ratio of two polynomials of equal degree and are only expected to imitate series
for small to moderate sized A, in this case for A up to 100 as in table 3.

Table 3. Values of En(A) calculated from the perturbation series using repeated Aitken
transformations. The digits in brackets are the earliest digits to disagree with the values
calculated by Biswas et al.

A Eo(A) E\(A) E>(A) Es(\) E4(A)
0.1 1.065285509 54(6) 3.306872013(4) 5.74795927(0) 8.352 677 8(4) 11.098 595(7)
0.2 1.118 292654 3(7) 3.539 005 3(8) 6.277 248(8) 9.257 766(2) 12.440 60(3)
0.3 1.164 047 1(8) 3.732 484(5) 6.705 72(0) 9.975 31(6) 13.488 88(8)
0.4 1.204 810 3(9) 3.901 087(8) 7.072 598(6) 10.582 5(6) 14.368 9(3)
0.5 1.241854(2) 4.05193(4) 7.3969(1) 11,115 1(7) 15.136 8(8)
0.6 1.275983(9) 4.189 28(7) 7.689 5(8) 11.593 1(7) 15.823 5(6)
0.7 1.307 749(3) 4.31594(8) 7.957 5(8) 12.029 0(6) 16.488(0)
0.8 1.337 54(6) 4.433 8(6) 8.205 7(0) 12.431 2(4) 17.022(9)
0.9 1.36567(1) 4.544 4(6) 8.437 3(5) 12.805(7) 17.557(3)
1 1.39235(5) 4.648 8(2) 8.655 0(0) 13.156(9) 18.057(7)

10 2.449(4) 8.6(0) 16.6(5) 25.8(4) 35.9(3)

20 2.909) 10.(9) 20.6(5) 31.(8) 44.(6)

50 4.03) 13.(8) 2(6). 3(8) 5(9)

100 5.0(1) 1(7) 2(7). 4(5) 7(1)

Shanks (1955) observed that repeated use of his e, transformation, also called the
Aitken (1925-6) 8, and Padé [1, 2] (Padé 1892), was better than using higher-order
transformations, so this was tried on 25 terms of the asymptotic series for Eq(A) to E4(A)
for A from 0.1 to 100.

The results are given in table 3.

The successive Aitken transformations converged for eight steps, using up 16 terms,
and then became erratic due to rounding-off errors. They are truncated before the first
obviously erratic term, which was also used to estimate the rounding-off error. This was
confirmed by comparison with the table of Biswas et a/ (1973). One inaccurate digit is
included in brackets in table 3.

The energies given in table 3 using the eight Aitken transformations on 16 terms are
seen to be more accurate than the Padé [20, 20] calculations on 40 terms given by Graffi
et al and almost as accurate as their Padé-Borel [10, 10] calculations on 20 terms. The
accuracy is better than the results of Biswas e al for A = 0.1 but rapidly deteriorates for
larger A. However, there is no bias evident except for A =100 where the effect of
truncating at the first erratic term is to stop the series too early and so underestimate the
sum of the series.

4. Oscillators with finite potential barriers

There are several reasons for wishing to calculate the energy of an oscillator with a finite
potential barrier.
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First, in classical Newtonian mechanics, nonlinear oscillators exist with both nega-
tive and positive perturbation terms. The behaviour of the oscillator depends only on
the value of the potential energy up to the maximum amplitude of oscillation, and is
entirely independent of any hypothetical potential energy at larger amplitudes. In
quantum mechanics the cut-off is not so sharp, because of the phenomenon of leakage
and diffuse wavefunctions. However, continuity with the classical case does suggest
that (i) the wavefunctions will be small at infinity, (ii) the energy levels will be governed
mainly by the potential near the origin and (iii) that conditions at infinity will have little
effect on the energy levels.

Second, the wks solution of the Schrddinger equation for an oscillator with mth
power energy distortion, namely equation (1), is

A
(E—x*—

Y= PPEORE CXP(i‘[ (E—x2=Ax™)!? dx).

This contains an outer oscillatory part of the solution if m is odd and/or A is
negative. According to Weyl’s theory for singular self-adjoint equations (Weyl 1910;
see also Titchmarsh 1946) we can, by choosing a complex E and the (=) sign, find a
solution which both represents an outgoing wave and is square integrable outside the
potential well.

Third, in the Stark effect for the hydrogen atom, where the potential field is tilted by
a constant force, the wall of the potential well is finite on one side. Silverstone (1978)
obtained a perturbation series for the energy levels which was a divergent series of
negative terms. For small values of the perturbation parameter the terms of the series
decreased to a minimum, after which they grew steadily. When he truncated just before
the minimum term, he obtained a value for the energy in close agreement with the
calculations of Hehenberger et al (1974) using Weyl’s theory.

These three considerations suggest (i) that decaying energy levels represented by
complex eigenvalues exist for the anharmonic oscillator, and furthermore (ii) that they
might be deducible directly from the coefficients of the asymptotic series with minimal
consideration of conditions at infinity.

5. Summing a series of positive terms

The choice of a method of summing a divergent series of positive terms depends on
several considerations.

First we assume that the series is asymptotic. Hence, if the terms rapidly decrease in
size, the remainder after truncation is approximately equal to the first term omitted. We
can also improve on this if the ratio of successive terms varies slowly along the series and
is less than 1. We can then use some convergence speeding process such as the Aitken
8, transformation. In any case, when A is small we sum the asymptotic series like any
other convergent series. In our case, this occurs approximately for A <0.02 for the
quartic and A <0.15 for the cubic distortion.

For intermediate values of A the early terms still decrease, then level off and grow
without limit. Finally, if A is larger than approximately 0.4 in both cases, the terms grow
from the start.

Many of the rational transformations have singularities within the operating range
of these series, and so cannot be used or must be modified.
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For instance the Borel transformation

0

u"
zu,,=j y ULt g
n!

0]

as used successfully by Grafhi ez al (1970) on an alternating series could also be used ona
series of positive terms. If the series X u,t"/n! can be analytically continued to
moderately large ¢+ and has a simple pole in (0, o¢), then the path of integration must be
taken round the singularity and will yield a complex integral. This could be the complex
eigenvalue we wish to evaluate.

However, it was decided that it would be simpler to use two different models for the
series for the intermediate range of A. These are the exponential integral, which is
closely related to the Borel transformation, and a truncated binomial. In Drummond
(1981) these two functions are proved to be asymptotically the same. Furthermore,
when the truncated binomial was tested on one of Silverstone’s series for the Stark
effect, it gave a complex sum agreeing with both the real and imaginary parts of
Hehenberger’s complex eigenvalues calculated using Weyl’s theory. This is more
precise then Silverstone’s truncation described in § 4.

The exponential integral. 1f the series behaves like the exponential integral,

t

x—
— dt

- Ce 1 1 —1)! a(Tn!
e"E,-(x)=—f et dt=;+;—2+...+(nx—n)+(~1)"lj‘ n;_

where x is close to 1, u, ={(n—1)!/x" and e™~ is small, then the remainder integral is

war [ Pnte™70de [T n! o .o nal 2 [(Cnle™!
(-1 e ——exp(—x+ne’ —nif)ido+(-1)"""e —=dt
—x t 0 n x t
The first of these three integrals is approximately (x —n)u,, the second is [-3+
i(n7/2)"*lu, and the third is small. Hence the remainder near the smallest term is
approximately

u[x —n—3xi(nm/2)Y?).

If the sequence of terms is concave, the three smallest terms being ui—1, U, U1,
then we can substitute for x and #n, so the sum of the series is

(Mic—1— Uic) Un Ue |, TU—-1Uk 2
S=up+ui+...+Fug_1+ ———+1u<——————————) 3
o T e =2t g 3 « 2(Upe—1Uicsy —UE) 3)
The truncated binomial series.
Let
Unt! ( - plp+1)...(p+r+2) _1>
= 1-2)?~1~-pz—...— ’
Y Ly (S pz r—1)! @
p+r[ p+r+1 ( p+r+2 )]}
= + +...
u,,{l P 1+ (1 ) )
and
Z,=u 1+ R {1+R,[1+R, 2(1+..)}}] (6)

where R, = up+1/ U,
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If Z, is the tail of the series to be summed, we may match the first four items of the
series (5) and (6) using the parameters p, r and z found from the equations

F=-= (Rn _4Rn+1 + 3Rn+2)/(Rn - 2Rn+1 +Rn+2)a (7)
z=(+2)R,.1—(r+1)R,, (8)
p=-r+(r+1R,/z, 9)

and hence find T, using equation (4).

If the series (6) is the tail of the exponential integral series, all the terms of the two
series coincide in the limit r»00. Hence the limiting truncated binomial and the
exponential integral agree.

For the E,(A) series, r was not a positive integer, so I relaxed equation (7), chose
r=4,8,16, 32, solved equations (8), (9) and (4) using (1-2) P =(z-1)" " if z >1,
and extrapolated to zero error in the fourth term to find T,.

To estimate the error in this method this calculation was repeated for T, and T, .».
The series was then transformed by term splitting to

S=uo+ur+...+up 1 +{(T)+ = T)]+[(Trs1) + (Une1— Tus1)]

+ [(Tn+1)+ (un+2- Tn+2)]
=uotur+. . Fup+To+ul+ur +...

where u¥ = u, — T,, + T,.+1. This sums the series, while the last two terms are part of a
new asymptotic series which can be used to judge the accuracy of the transformation.

Both equations (3) and (4) were used near the smallest terms to sum the series for
intermediate A when a smallest term was available,

For the largest values of A the truncated binomial T, together with u& and uf were
used and the calculated eigenvalues were rounded off larger than u§ and uf.

The results of the truncated binomial calculations are listed in tables 4, 5, 6 and 7.

The calculations using equation (3) were also checked against these and found to
agree for intermediate A where a minimum existed.

In the case of the cubic distortion, it was speculated that the appropriate model of
the asymptotic series which contains only even powers of A might be a truncated double
binomial based on [(1+z)” +(1 - z)”]. However, the properties of this series are not
fully developed in the first 20 terms of the cubic distortion series, and the single
binomial series was found to fit better to these terms. Also the differences between the
two calculations were less than the size of the terms in the transformed series.

6. Conclusion

These calculations using perturbation series have not been rigorously justified.
However, if the series are asymptotic then, for very small A, the error is comparable with
the first term omitted and very accurate calculations may be made. For intermediate A,
the three models (exponential integral, truncated binomial and truncated double
binomial) mutually agree and represent a significant improvement on truncation before
the smallest term.

For large A, where the first term is the smallest term, the calculations are self
consistent.
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Table 4. Real part of the energy levels for the oscillator with quartic distortion for negative
A calculated by fitting a truncated binomial to the four smallest terms of the series.

—A Eo E1 E2 E3 E4

0 1 3 5 7 9

0.01 0.9923632206 29614019035 4.898 3020366 6.8014327585 8.668 928 127 8

0.02 0.984427669 8 2.9202821613 4.786 33505 6.573 552 8.268 8

0.03 09761461974 2.875948 30 4.659 247 6.29108 7.698

0.04 0.967451234 2.827 103 4.504 5 5.91 7.05

0.05 0.95823336 2.77126 4.315 5.54 6.6

0.06 0.948 330 2.707 4.12 5.3 6.4

0.07 0.937 582 2.636 3.96 5.1 6.3

0.08 0.92595 2.566 3.83 5.0 6.3

0.09 0.91355 2.50 3.7 4.9 6.2

0.1 0.9006 2.45 37 4.9 6.2

0.12 0.8746 2.35 3.6 4.8 6.2

0.15 0.839 2.26 3.5 4.8 6.3

0.2 0.793 2.18 3.5 4.8 7

0.25 0.76 2.14 3.5 5 7

03 0.74 2.1 3.6 5 7

04 072 2.1 4 5 7

0.5 0.72 2.2 4 6 8

0.6 0.72 2.3 4 6 8

0.7 072 2.3 4 6 8

0.8 073 2.3 4 6 9

09 074 24 4 6 9

1 0.75 2 4 7 9
Table 5. Imaginary part of the energy levels in table 4.

-A  Ep E, E, E, E,

0

0.01

0.02 0.000 04

0.03 0.000 054 0.002 35 0.0426

0.04 0.000 089 0.004 60 0.076 0.41

0.05 0.0000146 0.001 54 0.042 0.31 0.9

0.06 0.000119 0.0089 0.13 0.62 1.5

0.07 0.000521 0.027 0.27 0.9 2.0

0.08 0.001 54 0.057 0.41 1.2 2.4

0.09 0.003 49 0.10 0.56 1.5 2.8

0.1 0.0066 0.15 0.7 1.7 3.1

0.12 0.0165 0.25 1.0 2.2 3.7

0.15 0.039 0.4 1.4 2.8 4.5

02 0.09 0.7 1.9 3.6 5.6

0.25 0.14 0.9 2.4 4.2 6

03  0.19 1.1 2.7 4.8 7

04 027 1.4 3.4 5.8 8

0.5 0.35 1.7 3.8 6 9

0.6 042 1.9 4 7 10

0.7 048 2.1 5 8 1

0.8 0.53 2.3 S 8 12

0.9 0.8 2.5 5 9 13

1 0.62 2.6 5 9 13
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The anharmonic oscillator 1661
Table 7. Imaginary part of the energy levels in table 6.

A EO E1 Ez E3 E4 E5

0.1

0.12 0.022
0.15 0.000 2 0.03 0.34 0.98
0.2 0.00002 0.006 0.20 0.8 1.7 2.7
0.25 0.0014 0.12 0.8 1.7 2.8 4.0
0.3 0.013 0.35 1.3 2.4 3.6 5.0
04 0.08 0.8 2.0 34 4.8 6.4
0.5 0.18 1.2 2.6 4 6 7.4
0.6 0.27 1.4 3 5 6 8

0.7 0.34 1.7 3 5 7 9

0.8 04 2 4 5 7 10

09 05 2 4 6 8 10

1 0.5 2 4 6 8 11
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