The anharmonic oscillator: perturbation series for cubic and quartic energy distortion

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1981 J. Phys. A: Math. Gen. 141651
(http://iopscience.iop.org/0305-4470/14/7/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 14:39

Please note that terms and conditions apply.

The anharmonic oscillator: perturbation series for cubic and quartic energy distortion

J E Drummond
Department of Applied Mathematics, Science Faculty, Australian National University, Canberra, Australia

Received 1 December 1980

Abstract

Twenty five terms of the perturbation series are calculated for the first five energy levels of an oscillator with λx^{4} energy distortion and a similar calculation is carried out for the first six levels for λx^{3} distortion. For the positive quartic the alternating series is summed using the Aitken δ_{2} transformation for λ from 0.1 to 100 . An exponential integral model and a truncated binomial model are used to transform the series for negative distortion energies, and the complex energy eigenvalues are calculated for ($-\lambda$) from 0.01 to 1 .

1. Introduction

The harmonic oscillator in classical and quantum mechanics is a rare phenomenon, but it is a basic first approximation to a wide variety of small-amplitude anharmonic oscillating systems. If the potential energy of an oscillator can be expanded as a power series in x, where x is the displacement from the minimum position, then the potential energy has the form

$$
V=V_{0}+A x^{2}+B x^{3}+C x^{4}+\ldots
$$

The constant \boldsymbol{A} is positive for a harmonic oscillator. The next most important term is the cubic term for an asymmetric oscillator or the quartic term for a symmetric oscillator. Hence these two terms are worthy of study. So far the positive perturbations have been studied in some detail, but the negative perturbations have received somewhat less attention.

The energy levels of the Schrödinger wave equation,

$$
\begin{equation*}
\left(-\mathrm{d}^{2} / \mathrm{d} x^{2}+x^{2}+\lambda x^{m}\right) \psi=E \psi, \tag{1}
\end{equation*}
$$

have been calculated by Biswas et al (1973) for eight energy levels for $m=4$ and two levels for $m=6$ and 8 , for λ from 0.1 to 100 . Their method was to find the zeros of determinants which converge to the Hill determinant. Ginsberg and Montroll (1978) have shown how to use good approximate wavefunctions to calculate the energy for all positive λ. Bazley and Fox (1961) have also found rigorous upper and lower bounds for the lower energy levels for $m=4$.

Bender and Wu (1969) have calculated 75 terms of the ground-state energy perturbation series for the positive quartic energy perturbation and have demonstrated that the ratio of successive terms increases linearly. This means that the series is similar
to the asymptotic series for the exponential integral and that the radius of convergence of their series is zero. However, Simon (1970) has studied the analytic properties of this series and its Padé approximants (Padé 1892), while Graffi et al (1970) have used both Padé approximants on 40 terms and Padé-Borel approximants on 20 terms for λ (their β) from 0.1 to 14 , to calculate energies. These agree with the results of Biswas et al.

The following calculations show that convergence speeding of the asymptotic series for positive quartic distortion gives an unbiased sum up to at least $\lambda=50$. On the other hand, rounding-off errors starting with 16 -figure accuracy cause the accuracy to decrease from 14 figures at $\lambda=0.1$ to two figures at $\lambda=50$.

Calculations of the negative quartic and cubic distortions are also made, using the direct perturbation series together with an improved truncation based on the exponential integral. An even better method is a truncated binomial transformation (Drummond 1981), which has been successfully used to find exponential integrals in the shadow of their singularity and also to find complex energy levels in the Stark effect.

2. Perturbation series for quartic and cubic distortion

We wish to find the eigenvalues $E(\lambda)$ of the differential equation
$\left(-\mathrm{d}^{2} / \mathrm{d} x^{2}+x^{2}+\lambda x^{m}\right) \psi_{N}(\lambda, x)=E_{N}(\lambda) \psi_{N}(\lambda, x) \quad(m=3,4 ; N=0,1,2, \ldots)$
with the associated boundary condition

$$
\lim _{x \rightarrow \pm \infty} \psi_{N}(\lambda, x)=0
$$

To do this we set

$$
\psi_{N}(\lambda, x)=\exp \left(\frac{1}{2} x^{2}\right)\left[\psi_{N, 0}(x)+\lambda \psi_{N, 1}(x)+\lambda^{2} \psi_{N, 2}(x)+\ldots\right]
$$

and

$$
\begin{equation*}
E_{N}(\lambda)=2 N+1+\lambda E_{N, 1}-\lambda^{2} E_{N, 2}+\lambda^{3} E_{N, 3}-\ldots \tag{2}
\end{equation*}
$$

The first 25 coefficients of equation (2) for the quartic distortion for five energy levels and 20 coefficients for the cubic for six levels were computed, extending the method of Bender and Wu (1969, p 1233) using 8 - and 16 -figure accuracy. These two calculations agree mostly to six figures, so the higher-precision calculation was truncated at 14 figures, except for the coefficients for the last two cubic energy levels. These agreed to four figures, and so were truncated at 12 figures.

For the quartic energy distortion oscillator, the values of $E_{N, r}$ are given in table 1, while for the cubic energy distorted oscillator, the odd coefficients are all zero and the values of $E_{N, 2 r}$ are given in table 2.

3. Energy levels for quartic distortion and positive $\boldsymbol{\lambda}$

Graffi et al (1970) calculated $E_{0}(\lambda)$ using the series of Bender and Wu (1969). They found that the Padé-Borel transformation was more rapidiy convergent than the Padé transformation, and noted that the diagonal Padé approximants tend to a constant for large λ whereas $E_{0}(\lambda) \sim \lambda^{1 / 3}$ for large λ.
Table 1. Values of the unperturbed energy level and the next 25 coefficients, $E_{N, \text {, }}$ in the perturbation series (2) for the first five energy levels of the oscillator with quartic energy distortion. The figure after the comma is the power of 10 multiplying the number.

	$E_{0, r}\left(E_{0,0}=1\right)$	$E_{1, r}\left(E_{1.0}=3\right)$	$E_{2, r}\left(E_{2,0}=5\right)$	$E_{3, r}\left(E_{3,0}=7\right)$	$E_{4, r}\left(E_{4,0}=9\right)$
1	0.75 , 0	3.75 , 0	9.75 , 0	1.875	3.075 , 1
2	1.3125 , 0	1.03125 , 1	3.84375 , 1	9.84375	2.030625 , 2
3	5.203125 , 0	6.1171875 , 1	3.13734375 , 2	1.044140625 , 3	2.674265625 , 3
4	3.01611328125 , 1	5.082861328125 , 2	$3.4924365234375,3$	1.4828686523437 , 4	$4.6626196289062,4$
5	2.2381127929687 , 2	$5.2012902832031,3$	$4.6874656494141,4$	2.5023861694336 , 5	9.5667995874023 , 5
6	1.9994629211426 , 3	6.1857487335205 , 4	$7.1758352645874,5$	4.7576384239197 , 6	$2.1929835470856,7$
7	2.0777089485168 , 4	$9.2857689586639,5$	$1.2156983158104,7$	9.9008373856544 , 7	5.4611063269948 , 8
8	$2.4568917728734,5$	$1.2266378918620,7$	$2.2381022174554,8$	2.2160590591350 , 9	1.4525936657723 , 10
9	3.2560218877468 , 6	$1.9824440382907,8$	4.4250556761271 , 9	5.2741960857723 , 10	4.0814910362753 ,11
10	$4.7810431060125,7$	3.4681831043756 , 9	9.3214279572851 , 10	1.3243619678987 , 12	1.2022597768091 , 13
11	7.7083331640928 , 8	6.5273983912890 ,10	2.0804230561688 , 12	3.4893450537402 , 13	3.6925552894831 ,14
12	1.3544324689229 , 10	1.3154167663830 ,12	4.8999025153533 ,13	9.6083712187960 , 14	1.177841929 1542,16
13	2.5772623493934 ,11	2.8276035492737 , 13	1.2142448997670 ,15	2.7572221412344 ,16	3.890515423 2136, 17
14	5.2817513226784 ,12	6.4626193504263 ,14	3.1588709054923 ,16	8.2278923971823 , 17	1.3278219260339 , 19
15	1.1601667465831 ,14	1.5660452802663 ,16	$8.6117924727220,17$	2.5492808600676 , 19	$4.6749594656405,20$
16	2.7197576152469 , 15	4.0131947931064 ,17	2.4567176880915 ,19	8.1912171462248 ,20	1.6958810076583 ,22
17	$6.7787946929772,16$	$1.0850078471821,19$	$7.3242891971999,20$	2.7270481867750 ,22	6.3329305584041 ,23
18	1.7902101950155 , 18	3.0878991899559 ,20	$2.2794115077006,22$	9.4004243423338 ,23	2.4328943841084 ,25
19	4.9940119211197 , 19	$9.2313865804246,21$	7.3969460442331 ,23	$3.3532392657934,25$	9.6105291048555 ,26
20	1.4675140102044 ,21	2.8932160725828 ,23	$2.5003038150013,25$	1.2371696221746 ,27	$3.9023934620720,28$
21	4.5311362966848 ,22	9.4883257798116 ,24	$8.7940086107074,26$	4.7189217919439 ,28	1.6284304712533 ,30
22	1.4666523700373 ,24	3.2503071329352 ,26	3.2149912862416 ,28	1.8499875669078 ,30	6.9820438243436 ,31
23	4.9662830694627 , 25	1.1610790295098 ,28	$1.2204454513744,30$	7.5723604384089 ,31	3.0754317602135 ,33
24	1.7558394925349 ,27	$4.3183876350709,29$	$4.8056588422886,31$	3.1827100249313 ,33	1.3914878028997 , 35
25	$6.4702210429466,28$	$1.6698032823770,31$	1.960829 2577232,33	$1.3803399022331,35$	$6.4660528926880,36$

Table 2. Values of the unperturbed energy level, $E_{N, 0}$, and some non-zero coefficients, $E_{N, n}$, in the perturbation series (2) for the first six energy levels of the oscillator with cubic energy distortion. The figure after the comma is the power of 10 multiplying the number.

r	$E_{0, r}\left(E_{0,1}=1\right)$	$E_{1, r}\left(E_{1,0}=3\right)$
2	0.6875 , 0	4.4375 , 0
4	$1.81640625 \quad, 0$	$2.197265625 \quad, 1$
6	9.694580078125 , 0	2.0203588867187 , 2
8	$7.3435993194580,1$	2.4764132881165 , 3
10	$7.0202156996727,2$	$3.6361944868326,4$
12	$8.0094640542939,3$	6.0857234945912 , 5
14	1.0565943104322 , 5	1.1295562157504 , 7
16	$1.5793884575006,6$	2.2865590991511 , 8
18	$2.6376801438643,7$	4.9938370445565 , 9
20	4.8698036617068 , 8	1.1680942272910 ,11
22	9.8559727014007 , 9	$2.9112273146578,12$
24	2.1714268111984 ,11	7.7019900564719 ,13
26	5.1765577874394 ,12	2.1568896598094 ,15
28	1.3283297563868 ,14	6.3793085757893 ,16
30	3.6518983124530 ,15	1.9889283991882 ,18
32	$1.0712104754797,17$	6.5258266237623 , 19
34	3.3400635256389 ,18	2.2497988129858 ,21
36	1.1033146837805 ,20	$8.1374686393134,22$
38	3.8493751158581 ,21	3.0834002595360 ,24
40	1.4145944754059 ,23	1.2221646537172 ,26
r	$E_{2 . r}\left(E_{2,0}=5\right)$	$E_{3, r}\left(E_{3,0}=7\right)$
2	1.19375 , 1	2.31875 , 1
4	9.169921875 , 1	2.4404296875 , 2
6	1.2649704589844 , 3	4.5550021972656 , 3
8	$2.2619459896088,4$	1.0890179998398 , 5
10	4.7298272851682 , 5	3.0109916025302 , 6
12	1.1033528065307 , 7	$9.1907550848866,7$
14	$2.7983883187375,8$	3.0200458013298 , 9
16	7.5967343389386 , 9	1.0521293048447 , 11
18	2.1849583490308 ,11	3.8477037430638 ,12
20	6.6121001097434 ,12	1.4670772453026 ,14
22	$2.0950742944036,14$	5.8039309304247 ,15
r	$E_{4, r}\left(E_{4,0}=9\right)$	$E_{5, r}\left(E_{5,0}=11\right)$
2	$3.81875 \quad, 1$	$5.69375 \quad, 1$
4	$5.1205078125,2$	$9.2876953125,2$
6	$1.21068869629,4$	2.66336325684 , 4
8	3.64581424656 , 5	9.69718598728 , 5
10	1.26255928017 , 7	4.04762436334 , 7
12	$4.80071832172,8$	1.84927848506 , 9
14	$1.95466621250,10$	9.01941055712 ,10
16	8.39411631960 ,11	4.62555116803 , 12
18	3.76473724145 ,13	2.46995414660 ,14
20	$1.75152130030,15$	1.36402746075 ,16
22	8.41243431436 ,16	$7.75300648904,17$

This last comment is not surprising, since the diagonal Padé approximants [N, N] are the ratio of two polynomials of equal degree and are only expected to imitate series for small to moderate sized λ, in this case for λ up to 100 as in table 3 .

Table 3. Values of $E_{N}(\lambda)$ calculated from the perturbation series using repeated Aitken transformations. The digits in brackets are the earliest digits to disagree with the values calculated by Biswas et al.

$E_{0}(\lambda)$	$E_{1}(\lambda)$	$E_{2}(\lambda)$	$E_{3}(\lambda)$	$E_{4}(\lambda)$	
0.1	$1.06528550954(6)$	$3.306872013(4)$	$5.74795927(0)$	$8.3526778(4)$	$11.098595(7)$
0.2	$1.1182926543(7)$	$3.5390053(8)$	$6.277248(8)$	$9.257766(2)$	$12.44060(3)$
0.3	$1.1640471(8)$	$3.732484(5)$	$6.70572(0)$	$9.97531(6)$	$13.48888(8)$
0.4	$1.2048103(9)$	$3.901087(8)$	$7.072598(6)$	$10.5825(6)$	$14.3689(3)$
0.5	$1.241854(2)$	$4.05193(4)$	$7.3969(1)$	$11.1151(7)$	$15.1368(8)$
0.6	$1.275983(9)$	$4.18928(7)$	$7.6895(8)$	$11.5931(7)$	$15.8235(6)$
0.7	$1.307749(3)$	$4.31594(8)$	$7.9575(8)$	$12.0290(6)$	$16.488(0)$
0.8	$1.33754(6)$	$4.4338(6)$	$8.2057(0)$	$12.4312(4)$	$17.022(9)$
0.9	$1.36567(1)$	$4.5444(6)$	$8.4373(5)$	$12.805(7)$	$17.557(3)$
1	$1.39235(5)$	$4.6488(2)$	$8.6550(0)$	$13.156(9)$	$18.057(7)$
10	$2.449(4)$	$8.6(0)$	$16.6(5)$	$25.8(4)$	$35.9(3)$
20	$2.9(9)$	$10 .(9)$	$20.6(5)$	$31 .(8)$	$44 .(6)$
50	$4.0(3)$	$13 .(8)$	$2(6)$.	$3(8)$	$5(9)$
100	$5.0(1)$	$1(7)$	$2(7)$.	$4(5)$	$7(1)$

Shanks (1955) observed that repeated use of his e_{1} transformation, also called the Aitken (1925-6) δ_{2} and Padé [1, 2] (Padé 1892), was better than using higher-order transformations, so this was tried on 25 terms of the asymptotic series for $E_{0}(\lambda)$ to $E_{4}(\lambda)$ for λ from 0.1 to 100 .

The results are given in table 3 .
The successive Aitken transformations converged for eight steps, using up 16 terms, and then became erratic due to rounding-off errors. They are truncated before the first obviously erratic term, which was also used to estimate the rounding-off error. This was confirmed by comparison with the table of Biswas et al (1973). One inaccurate digit is included in brackets in table 3.

The energies given in table 3 using the eight Aitken transformations on 16 terms are seen to be more accurate than the Padé [20,20] calculations on 40 terms given by Graffi et al and almost as accurate as their Padé-Borel [10, 10] calculations on 20 terms. The accuracy is better than the results of Biswas et al for $\lambda=0.1$ but rapidly deteriorates for larger λ. However, there is no bias evident except for $\lambda=100$ where the effect of truncating at the first erratic term is to stop the series too early and so underestimate the sum of the series.

4. Oscillators with finite potential barriers

There are several reasons for wishing to calculate the energy of an oscillator with a finite potential barrier.

First, in classical Newtonian mechanics, nonlinear oscillators exist with both negative and positive perturbation terms. The behaviour of the oscillator depends only on the value of the potential energy up to the maximum amplitude of oscillation, and is entirely independent of any hypothetical potential energy at larger amplitudes. In quantum mechanics the cut-off is not so sharp, because of the phenomenon of leakage and diffuse wavefunctions. However, continuity with the classical case does suggest that (i) the wavefunctions will be small at infinity, (ii) the energy levels will be governed mainly by the potential near the origin and (iii) that conditions at infinity will have little effect on the energy levels.

Second, the wKb solution of the Schrödinger equation for an oscillator with m th power energy distortion, namely equation (1), is

$$
\psi=\frac{A}{\left(E-x^{2}-\lambda x^{m}\right)^{1 / 4}} \exp \left(\pm \int\left(E-x^{2}-\lambda x^{m}\right)^{1 / 2} \mathrm{~d} x\right)
$$

This contains an outer oscillatory part of the solution if m is odd and/or λ is negative. According to Weyl's theory for singular self-adjoint equations (Weyl 1910; see also Titchmarsh 1946) we can, by choosing a complex E and the (\pm) sign, find a solution which both represents an outgoing wave and is square integrable outside the potential well.

Third, in the Stark effect for the hydrogen atom, where the potential field is tilted by a constant force, the wall of the potential well is finite on one side. Silverstone (1978) obtained a perturbation series for the energy levels which was a divergent series of negative terms. For small values of the perturbation parameter the terms of the series decreased to a minimum, after which they grew steadily. When he truncated just before the minimum term, he obtained a value for the energy in close agreement with the calculations of Hehenberger et al (1974) using Weyl's theory.

These three considerations suggest (i) that decaying energy levels represented by complex eigenvalues exist for the anharmonic oscillator, and furthermore (ii) that they might be deducible directly from the coefficients of the asymptotic series with minimal consideration of conditions at infinity.

5. Summing a series of positive terms

The choice of a method of summing a divergent series of positive terms depends on several considerations.

First we assume that the series is asymptotic. Hence, if the terms rapidly decrease in size, the remainder after truncation is approximately equal to the first term omitted. We can also improve on this if the ratio of successive terms varies slowly along the series and is less than 1 . We can then use some convergence speeding process such as the Aitken δ_{2} transformation. In any case, when λ is small we sum the asymptotic series like any other convergent series. In our case, this occurs approximately for $\lambda<0.02$ for the quartic and $\lambda<0.15$ for the cubic distortion.

For intermediate values of λ the early terms still decrease, then level off and grow without limit. Finally, if λ is larger than approximately 0.4 in both cases, the terms grow from the start.

Many of the rational transformations have singularities within the operating range of these series, and so cannot be used or must be modified.

For instance the Borel transformation

$$
\sum u_{n}=\int_{0}^{\infty} \sum \frac{u_{n} t^{n}}{n!} \mathrm{e}^{-t} \mathrm{~d} t
$$

as used successfully by Graffi et al (1970) on an alternating series could also be used on a series of positive terms. If the series $\Sigma u_{n} t^{n} / n!$ can be analytically continued to moderately large t and has a simple pole in $(0, \infty)$, then the path of integration must be taken round the singularity and will yield a complex integral. This could be the complex eigenvalue we wish to evaluate.

However, it was decided that it would be simpler to use two different models for the series for the intermediate range of λ. These are the exponential integral, which is closely related to the Borel transformation, and a truncated binomial. In Drummond (1981) these two functions are proved to be asymptotically the same. Furthermore, when the truncated binomial was tested on one of Silverstone's series for the Stark effect, it gave a complex sum agreeing with both the real and imaginary parts of Hehenberger's complex eigenvalues calculated using Weyl's theory. This is more precise then Silverstone's truncation described in § 4.

The exponential integral. If the series behaves like the exponential integral,
$\mathrm{e}^{-x} E_{i}(x)=-\int_{-x}^{\infty} \frac{\mathrm{e}^{-x-t}}{t} \mathrm{~d} t=\frac{1}{x}+\frac{1}{x^{2}}+\ldots+\frac{(n-1)!}{x^{n}}+(-1)^{n+1} \int_{-x}^{\infty} \frac{n!\mathrm{e}^{-x-t}}{t^{n-1}} \mathrm{~d} t$
where x is close to $n, u_{n}=(n-1)!/ x^{n}$ and e^{-x} is small, then the remainder integral is $(-1)^{n+1} \int_{-x}^{-n} \frac{n!\mathrm{e}^{-x-t} \mathrm{~d} t}{t^{n+1}}-\int_{0}^{ \pm \pi} \frac{n!}{n^{n}} \exp \left(-x+n \mathrm{e}^{\mathrm{i} \theta}-n \mathrm{i} \theta\right) \mathrm{i} \mathrm{d} \theta+(-1)^{n+1} \mathrm{e}^{-2 x} \int_{x}^{\infty} \frac{n!\mathrm{e}^{x-t}}{t^{n+1}} \mathrm{~d} t$.

The first of these three integrals is approximately $(x-n) u_{n}$, the second is $\left[-\frac{1}{3} \pm\right.$ $\left.\mathrm{i}(n \pi / 2)^{1 / 2}\right] u_{n}$ and the third is small. Hence the remainder near the smallest term is approximately

$$
u_{n}\left[x-n-\frac{1}{3} \pm \mathrm{i}(n \pi / 2)^{1 / 2}\right] .
$$

If the sequence of terms is concave, the three smallest terms being u_{k-1}, u_{k}, u_{k+1}, then we can substitute for x and n, so the sum of the series is

$$
\begin{equation*}
S \simeq u_{0}+u_{1}+\ldots+u_{k-1}+\frac{\left(u_{k-1}-u_{k}\right) u_{n}}{u_{k-1}-2 u_{k}+u_{k+1}}-\frac{u_{k}}{3}+\mathrm{i} u_{k}\left(\frac{\pi u_{k-1} u_{k}}{2\left(u_{k-1} u_{k+1}-u_{k}^{2}\right)}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

The truncated binomial series.
Let

$$
\begin{gather*}
T_{n}=\frac{u_{n} r!}{p(p+1) \ldots(p+r-1) z^{r}}\left((1-z)^{-p}-1-p z-\ldots-\frac{p(p+1) \ldots(p+r+2)}{(r-1)!} z^{r-1}\right) \tag{4}\\
=u_{n}\left\{1+\frac{p+r}{r+1} z\left[1+\frac{p+r+1}{r+2} z\left(1+\frac{p+r+2}{r+3} z(1+\ldots)\right)\right]\right\} \tag{5}
\end{gather*}
$$

and

$$
\begin{equation*}
Z_{n}=u_{n} \llbracket 1+R_{n}\left\{1+R_{n+1}\left[1+R_{n+2}(1+\ldots)\right]\right\} \rrbracket \tag{6}
\end{equation*}
$$

where $R_{n}=u_{n+1} / u_{n}$.

If Z_{n} is the tail of the series to be summed, we may match the first four items of the series (5) and (6) using the parameters p, r and z found from the equations

$$
\begin{align*}
& r=-\left(R_{n}-4 R_{n+1}+3 R_{n+2}\right) /\left(R_{n}-2 R_{n+1}+R_{n+2}\right), \tag{7}\\
& z=(r+2) R_{n+1}-(r+1) R_{n}, \tag{8}\\
& p=-r+(r+1) R_{n} / z, \tag{9}
\end{align*}
$$

and hence find T_{n} using equation (4).
If the series (6) is the tail of the exponential integral series, all the terms of the two series coincide in the limit $r \rightarrow \infty$. Hence the limiting truncated binomial and the exponential integral agree.

For the $E_{n}(\lambda)$ series, r was not a positive integer, so I relaxed equation (7), chose $r=4,8,16,32$, solved equations (8), (9) and (4) using $(1-z)^{-p}=(z-1)^{-p} \mathrm{e}^{\mathrm{i} p \pi}$ if $z>1$, and extrapolated to zero error in the fourth term to find T_{n}.

To estimate the error in this method this calculation was repeated for T_{n+1} and T_{n+2}. The series was then transformed by term splitting to

$$
\begin{aligned}
S=u_{0}+u_{1}+ & \ldots+u_{n-1}+\left[\left(T_{n}\right)+\left(u_{n}-T_{n}\right)\right]+\left[\left(T_{n+1}\right)+\left(u_{n+1}-T_{n+1}\right)\right] \\
& +\left[\left(T_{n+1}\right)+\left(u_{n+2}-T_{n+2}\right)\right] \\
= & u_{0}+u_{1}+\ldots+u_{n-1}+T_{n}+u_{n}^{*}+u_{n+1}^{*}+\ldots
\end{aligned}
$$

where $u_{n}^{*}=u_{n}-T_{n}+T_{n+1}$. This sums the series, while the last two terms are part of a new asymptotic series which can be used to judge the accuracy of the transformation.

Both equations (3) and (4) were used near the smallest terms to sum the series for intermediate λ when a smallest term was available.

For the largest values of λ the truncated binomial T_{0} together with u_{0}^{*} and u_{1}^{*} were used and the calculated eigenvalues were rounded off larger than u_{0}^{*} and u_{1}^{*}.

The results of the truncated binomial calculations are listed in tables 4, 5, 6 and 7 .
The calculations using equation (3) were also checked against these and found to agree for intermediate λ where a minimum existed.

In the case of the cubic distortion, th was speculated that the appropriate model of the asymptotic series which contains only even powers of λ might be a truncated double binomial based on $\left[(1+z)^{p}+(1-z)^{p}\right]$. However, the properties of this series are not fully developed in the first 20 terms of the cubic distortion series, and the single binomial series was found to fit better to these terms. Also the differences between the two calculations were less than the size of the terms in the transformed series.

6. Conclusion

These calculations using perturbation series have not been rigorously justified. However, if the series are asymptotic then, for very small λ, the error is comparable with the first term omitted and very accurate calculations may be made. For intermediate λ, the three models (exponential integral, truncated binomial and truncated double binomial) mutually agree and represent a significant improvement on truncation before the smallest term.

For large λ, where the first term is the smallest term, the calculations are self consistent.

Table 4. Real part of the energy levels for the oscillator with quartic distortion for negative λ calculated by fitting a truncated binomial to the four smallest terms of the series.

$-\lambda$	E_{0}	E_{1}	E_{2}	E_{3}	E_{4}
0	1	3	5	7	9
0.01	0.9923632206	2.9614019035	4.8983020366	6.8014327585	8.6689281278
0.02	0.9844276698	2.9202821613	4.78633505	6.573552	8.2688
0.03	0.9761461974	2.87594830	4.659247	6.29108	7.698
0.04	0.967451234	2.827103	4.5045	5.91	7.05
0.05	0.95823336	2.77126	4.315	5.54	6.6
0.06	0.948330	2.707	4.12	5.3	6.4
0.07	0.937582	2.636	3.96	5.1	6.3
0.08	0.92595	2.566	3.83	5.0	6.3
0.09	0.91355	2.50	3.7	4.9	6.2
0.1	0.9006	2.45	3.7	4.9	6.2
0.12	0.8746	2.35	3.6	4.8	6.2
0.15	0.839	2.26	3.5	4.8	6.3
0.2	0.793	2.18	3.5	4.8	7
0.25	0.76	2.14	3.5	5	7
0.3	0.74	2.1	3.6	5	7
0.4	0.72	2.1	4	5	8
0.5	0.72	2.2	4	6	8
0.6	0.72	2.3	4	6	8
0.7	0.72	2.3	4	6	9
0.8	0.73	2.3	4	6	9
0.9	0.74	2.4	4	7	9
1	0.75	2			

Table 5. Imaginary part of the energy levels in table 4.

$-\lambda$	E_{0}	E_{1}	E_{2}	E_{3}	E_{4}
0					
0.01					
0.02					0.00004
0.03			0.000054	0.00235	0.0426
0.04		0.000089	0.00460	0.076	0.41
0.05	0.0000146	0.00154	0.042	0.31	0.9
0.06	0.000119	0.0089	0.13	0.62	1.5
0.07	0.000521	0.027	0.27	0.9	2.0
0.08	0.00154	0.057	0.41	1.2	2.4
0.09	0.00349	0.10	0.56	1.5	2.8
0.1	0.0066	0.15	0.7	1.7	3.1
0.12	0.0165	0.25	1.0	2.2	3.7
0.15	0.039	0.4	1.4	2.8	4.5
0.2	0.09	0.7	1.9	3.6	5.6
0.25	0.14	0.9	2.4	4.2	6
0.3	0.19	1.1	2.7	4.8	7
0.4	0.27	1.4	3.4	5.8	8
0.5	0.35	1.7	3.8	6	9
0.6	0.42	1.9	4	7	10
0.7	0.48	2.1	5	8	11
0.8	0.53	2.3	5	8	12
0.9	0.58	2.5	5	9	13
1	0.62	2.6	5	9	13

Table 6. Real part of the energy levels for the oscillator with cubic distortion calculated by fitting a truncated binomial to the four smallest terms of the series.

λ	E_{0}	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}
0	1	3	5	7	9	11
0.01	0.999931231826	2.999556030071	4.99880533174	6.9976788050	8.99617611735	10.99429693557
0.02	0.999724708753	2.998221471381	4.99521024659	6.9906856588	8.98464228757	10.97707466708
0.03	0.999379771595	2.995988303218	4.98918103635	6.9789301814	8.96520741603	10.94798386960
0.04	0.998895309802	2.992842905840	4.98065991530	6.9622558459	8.9375370299	10.9064064454
0.05	0.998269743044	2.988765663646	4.9695624321	6.9404302371	8.9011261575	10.8513929429
0.06	0.997500994288	2.983730368840	4.9557734480	6.9131293459	8.8552538666	10.7815532841
0.07	0.996586453093	2.9777033777	4.9391411789	6.8799130823	8.798908377	10.694865910
0.08	0.995522927280	2.9706424449	4.9194684603	6.840186864	8.73066068	10.5883275
0.09	0.9943076580	2.9624951230	4.89649981	6.79313944	8.648437	10.457247
0.1	0.992932851	2.9531965473	4.8699017	6.7376366	8.549073	10.29358
0.12	0.989690721	2.930803972	4.803884	6.59370	8.2723	9.76
0.15	0.9834769	2.885742	4.658	6.208	7.50	8.9
0.2	0.96863	2.7565	4.19	5.6	7.15	8.8
0.25	0.9448	2.55	4.0	5.6	7.38	9.3
0.3	0.910	2.43	4.0	5.8	7.8	9.8
0.4	0.85	2.43	4.3	6.4	8.6	10.9
0.5	0.82	2.6	4.7	7	9	12
0.6	0.83	2.7	5	8	10	13
0.7	0.85	2.9	5	8	11	14
0.8	0.9	3	6	8	11	14
0.9	0.9	3	6	9	12	15
1	1	3	6	9	12	15

Table 7. Imaginary part of the energy levels in table 6.

λ	E_{0}	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}
0.1						
0.12						0.022
0.15			0.0002	0.03	0.34	0.98
0.2	0.00002	0.006	0.20	0.8	1.7	2.7
0.25	0.0014	0.12	0.8	1.7	2.8	4.0
0.3	0.013	0.35	1.3	2.4	3.6	5.0
0.4	0.08	0.8	2.0	3.4	4.8	6.4
0.5	0.18	1.2	2.6	4	6	7.4
0.6	0.27	1.4	3	5	6	8
0.7	0.34	1.7	3	5	7	9
0.8	0.4	2	4	5	7	10
0.9	0.5	2	4	6	8	10
1	0.5	2	4	6	8	11

References

Aitken A C 1925-6 Proc. R. Soc. Edinb. 46 289-305
Bazley N W and Fox D W 1961 Phys. Rev. 124 483-92
Bender C M and Wu T T 1969 Phys. Rev. Ser. 2184 1231-52
Biswas S N, Datta K, Saxena R P, Srivastrava P K and Varma F S 1973 J. Math. Phys. 14 1190-5
Drummond J E 1981 to be published
Ginsberg C A and Montroll E W 1978 J. Math. Phys. 19 336-46
Graffi S, Grecchi V and Simon B 1970 Phys. Lett. 32B 631-4
Hehenberger M, McIntosh H V and Brändas E 1974 Phys. Rev. A 10 1494-506
Padé H 1892 Ann. Ecol. Norm. Superior Supp. 39 1-93
Shanks D 1955 J. Math. Phys. 34 1-42
Silverstone H J 1978 Phys. Rev. A 18 1853-64
Simon B 1970 Ann. Phys. 58 76-136
Titchmarsh E C 1946 Eigenfunction Expansions Associated with Second-Order Differential Equations vol 1, 2
(London: OUP)
Weyl H 1910 Math. Ann. 68220

