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The anharmonic oscillator: perturbation series for cubic 
and quartic energy distortion 

J E Drummond 
Department of Applied Mathematics, Science Faculty, Australian National University, 
Canberra, Australia 

Received 1 December 1980 

Abstract. Twenty five terms of the perturbation series are calculated for the first five energy 
levels of an oscillator with Ax4 energy distortion and a similar calculation is carried out for 
the first six levels for A x 3  distortion. For the positive quartic the alternating series is 
summed using the Aitken Sz transformation for A from 0.1 to 100. An exponential integral 
model and a truncated binomial model are used to transform the series for negative 
distortion energies, and the complex energy eigenvalues are calculated for (-A) from 0.01 
to 1. 

1. Introduction 

The harmonic oscillator in classical and quantum mechanics is a rare phenomenon, but 
it is a basic first approximation to a wide variety of small-amplitude anharmonic 
oscillating systems. If the potential energy of an oscillator can be expanded as a power 
series in x, where x is the displacement from the minimum position, then the potential 
energy has the form 

V =  Vo+Ax2+Bx3+Cx4+.  . . . 
The constant A is positive for a harmonic oscillator. The next most important term is 
the cubic term for an asymmetric oscillator or the quartic term for a symmetric 
oscillator. Hence these two terms are worthy of study. So far the positive perturbations 
have been studied in some detail, but the negative perturbations have received 
somewhat less attention. 

The energy levels of the Schrodinger wave equation, 

(-d2/dX2 +x2+Axm)+ = E+, (1) 
have been calculated by Biswas et a1 (1973) for eight energy levels for m = 4 and two 
levels for m = 6 and 8, for A from 0.1 to 100. Their method was to find the zeros of 
determinants which converge to the Hill determinant. Ginsberg and Montroll (1978) 
have shown how to use good approximate wavefunctions to calculate the energy for all 
positive A.  Bazley and Fox (1961) have also found rigorous upper and lower bounds for 
the lower energy levels for m = 4. 

Bender and Wu (1969) have calculated 75 terms of the ground-state energy 
perturbation series for the positive quartic energy perturbation and have demonstrated 
that the ratio of successive terms increases linearly. This means that the series is similar 
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to the asymptotic series for the exponential integral and that the radius of convergence 
of their series is zero. However, Simon (1970) has studied the analytic properties of this 
series and its Pad6 approximants (Pad6 1892), while Graffi et a1 (1970) have used both 
Pad6 approximants on 40 terms and PadC-Bore1 approximants on 20 terms for A (their 
p )  from 0.1 to 14, to calculate energies. These agree with the results of Biswas et al. 

The following calculations show that convergence speeding of the asymptotic series 
for positive quartic distortion gives an unbiased sum up to at least A = 50. On the other 
hand, rounding-off errors starting with 16-figure accuracy cause the accuracy to 
decrease from 14 figures at A = 0.1 to two figures at A = 50. 

Calculations of the negative quartic and cubic distortions are also made, using the 
direct perturbation series together with an improved truncation based on the exponen- 
tial integral. An even better method is a truncated binomial transformation (Drum- 
mond 1981), which has been successfully used to find exponential integrals in the 
shadow of their singularity and also to find complex energy levels in the Stark effect. 

2. Perturbation series for qwartic and cubic distortion 

We wish to find the eigenvalues E(A) of the differential equation 

(-d2/dx2+x2+Axm)rCIN(A, x )  = E N ( A ) ~ N ( A ,  x )  ( m = 3 , 4 ; N = 0 , 1 , 2  ) . . . )  

with the associated boundary condition 

lim ~ N ( A ,  x )  = 0. 
X ' z t c c  

The first 25 Coefficients of equation (2) for the quartic distortion for five energy 
levels and 20 coefficients for the cubic for six levels were computed, extending the 
method of Bender and Wu (1969, p 1233) using 8- and 16-figure accuracy. These two 
calculations agree mostly to six figures, so the higher-precision calculation was trun- 
cated at 14 figures, except for the coefficients for the last two cubic energy levels. These 
agreed to four figures, and so were truncated at 12 figures. 

For the quartic energy distortion oscillator, the values of EN,, are given in table 1. 
while for the cubic energy distorted oscillator, the odd coefficients are all zero and the 
values of EN,Zr are given in table 2. 

3. Energy levels for quartic distortion and positive A 

Graffi et a1 (1970) calculated Eo(A) using the series of Bender and Wu (1969). They 
found that the PadC-Bore1 transformation was more rapidly convergent than the Pad6 
transformation, and noted that the diagonal Pad6 approximants tend to a constant for 
large A whereas Eo(A) - A for large A. 
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Table 2. Values of the unperturbed energy level, EN,o, and some non-zero coefficients, EN,,, 
in the perturbation series (2) for the first six energy levels of the oscillator with cubic energy 
distortion. The figure after the comma is the power of 10 multiplying the number. 

r 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 

0.687 5 , o  
1.816 406 25 , o  
9.694 580078 125 , 0 
7.343 599 319 458 0 , 1 
7.0202156996727 , 2 
8.0094640542939 , 3 
1.056 594 310432 2 , 5 
1.579 388 457 500 6 , 6 
2.6376801438643 , 7 
4.8698036617068 , 8 
9.855 972 701 400 7 , 9 
2.171 426 811 198 4 ,11 
5.176 557 787 439 4 ,12 
1.328 329 756 386 8 ,14 
3.651 898 312 453 0 ,15 
1.071 210 475 479 7 ,17 
3.340 063 525 638 9 ,18 
1.103 314 683 780 5 ,20 
3.849 375 115 858 1 ,21 
1.414 594 475 405 9 ,23 

4.437 5 , o  
2.197 265 625 , 1  
2.0203588867187 , 2 
2.4764132881165 , 3 
3.636 194 486 832 6 , 4 
6.085 723 494 591 2 , 5 
1.129 556 215 7504 , 7 
2.286559099 151 1 , 8 
4.9938370445565 , 9 
1.168 094 227 291 0 ,11 
2.911 227 314 657 8 ,12 
7.701 990 056 471 9 ,13 
2.156 889 659 809 4 ,15 
6.379 308 575 789 3 ,16 
1.988 928 399 188 2 ,18 
6.525 826 623 762 3 ,19 
2.249 798 812 985 8 ,21 
8.137 468 639 313 4 ,22 
3.083 400 259 536 0 ,24 
1.222 164 653 717 2 ,26 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 

1.193 75 
9.169 921 875 , 1  
1.2649704589844 , 3 
2.261 945 989 608 8 , 4 
4.7298272851682 , 5 
1.1033528065307 , 7 
2.7983883187375 , 8 
7.596 734 338 938 6 , 9 
2.184 958 349 030 8 ,11 
6.612 100 109 743 4 ,12 
2.095 074 294 403 6 ,14 

r 

2.318 75 , 1  
2.440 429 687 5 , 2 
4.5550021972656 , 3 
1.089 017 999 839 8 , 5 
3.0109916025302 , 6 
9.190755 084 886 6 , 7 
3.020 045 801 329 8 , 9 
1.052 129 304 844 7 ,11 
3.847 703 743 063 8 ,12 
1.467 077 245 302 6 ,14 
5.803 930 930 424 7 ,15 

ES,,.(ES,O = 11) 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 

3.818 75 , 1  
5.1205078125 , 2 
1.21068869629 , 4 
3.645 814246 56 , 5 
1.262 559 280 17 , 7 
4.800 718 321 72 , 8 
1.954 666 212 50 ,10 
8.394 116 319 60 ,11 
3.764 737 241 45 ,13 
1.751 521 300 30 ,15 
8.412 434 314 36 ,16 

5.693 75 
9.287 695 312 5 , 2 
2.663 363 256 84 , 4 
9.697 185 987 28 , 5 
4.047 624 363 34 , 7 
1.849 278 485 06 , 9 
9.019 410 557 12 ,10 
4.625 551 168 03 ,12 
2.469 954 146 60 ,14 
1.364 027 460 75 ,16 
7.753 006 489 04 ,17 
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This last comment is not surprising, since the diagonal Pad6 approximants [N,  NI 
are the ratio of two polynomials of equal degree and are only expected to imitate series 
for small to moderate sized A ,  in this case for A up to 100 as in table 3. 

Table 3. Values of E N ( / \ )  calculated from the perturbation series using repeated Aitken 
transformations. The digits in brackets are the earliest digits to disagree with the values 
calculated by Biswas et al. 

0.1 1.065 285 509 54(6) 
0.2 1.118 292 654 3(7) 
0.3 1.164 047 l(8) 
0.4 1.204 810 3(9) 
0.5 1.241 854(2) 
0.6 1.275 983(9) 
0.7 1.307 749(3) 
0.8 1.337 54(6) 
0.9 1.365 67(1) 
1 1.39235(5) 

10 2.449(4) 
20 2.9(9) 
50 4.0(3) 

100 5.0(1) 

3.306 872 013(4) 
3.539 005 3(8) 
3.732 484(5) 
3.901 087(8) 
4.051 93(4) 
4.189 28(7) 
4.315 94(8) 
4.433 8(6) 
4.544 4(6) 
4.648 8(2) 
8.6(0) 

10.(9) 
13.(8) 

1(7) 

5.747 959 27(0) 
6.277 248(8) 
6.705 72(0) 
7.072 598(6) 
7.396 9(1) 
7.689 5(8) 
7.957 5(8) 
8.205 7(0) 
8.437 3(5) 
8.655 O(0) 

16.6(5) 
20.6(5) 

2(6). 
~ ( 7 ) .  

8.352 677 8(4) 
9.257 766(2) 
9.975 31(6) 

10.582 5(6) 
11.115 l(7) 
11.593 l(7) 
12.029 O(6) 
12.431 2(4) 
12.805 (7) 
13.156(9) 
25.8(4) 
31.(8) 

3(8) 
4(5) 

11.098 595(7) 
12.440 60(3) 
13.488 88(8) 
14.368 9(3) 
15.136 8(8) 
15.823 5(6) 
16.488(0) 
17.022(9) 
17.557(3) 
18.057(7) 
35.9(3) 
44.(6) 
5(9) 
7(1) 

Shanks (1955) observed that repeated use of his el transformation, also called the 
Aitken (1925-6) Sz and Pad6 [ l ,  21 (Pad6 1892), was better than using higher-order 
transformations, so this was tried on 25 terms of the asymptotic series for & ( A )  to &(A)  
for A from 0.1 to 100. 

The results are given in table 3. 
The successive Aitken transformations converged for eight steps, using up 16 terms, 

and then became erratic due to rounding-off errors. They are truncated before the first 
obviously erratic term, which was also used to estimate the rounding-off error. This was 
confirmed by comparison with the table of Biswas et a1 (1973). One inaccurate digit is 
included in brackets in table 3. 

The energies given in table 3 using the eight Aitken transformations on 16 terms are 
seen to be more accurate than the Pad6 [20,20] calculations on 40 terms given by Graffi 
et a1 and almost as accurate as their Pad6-Bore1 [lo, 101 calculations on 20 terms. The 
accuracy is better than the results of Biswas et a1 for A = 0.1 but rapidly deteriorates for 
larger A. However, there is no bias evident except for A = 100 where the effect of 
truncating at the first erratic term is to stop the series too early and so underestimate the 
sum of the series. 

4. Oscillators with finite potential barriers 

There are several reasons for wishing to calculate the energy of an oscillator with a finite 
potential barrier. 
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First, in classical Newtonian mechanics, nonlinear oscillators exist with both nega- 
tive and positive perturbation terms. The behaviour of the oscillator depends only on 
the value of the potential energy up to the maximum amplitude of oscillation, and is 
entirely independent of any hypothetical potential energy at larger amplitudes. In 
quantum mechanics the cut-off is not so sharp, because of the phenomenon of leakage 
and diffuse wavefunctions. However, continuity with the classical case does suggest 
that (i) the wavefunctions will be small at infinity, (ii) the energy levels will be governed 
mainly by the potential near the origin and (iii) that conditions at infinity will have little 
effect on the energy levels. 

Second, the WKR solution of the Schrodinger equation for an oscillator with mth 
power energy distortion, namely equation (l), is 

A 

This contains an outer oscillatory part of the solution if m is odd and/or h is 
negative. According to Weyl’s theory for singular self-adjoint equations (Weyl 1910; 
see also Titchmarsh 1946) we can, by choosing a complex E and the (k) sign, find a 
solution which both represents an outgoing wave and is square integrable outside the 
potential well. 

Third, in the Stark effect for the hydrogen atom, where the potential field is tilted by 
a constant force, the wall of the potential well is finite on one side. Silverstone (1978) 
obtained a perturbation series for the energy levels which was a divergent series of 
negative terms. For small values of the perturbation parameter the terms of the series 
decreased to a minimum, after which they grew steadily. When he truncated just before 
the minimum term, he obtained a value for the energy in close agreement with the 
calculations of Hehenberger et a1 (1974) using Weyl’s theory. 

These three considerations suggest (i) that decaying energy levels iepresented by 
complex eigenvalues exist for the anharmonic oscillator, and furthermore (ii) that they 
might be deducible directly from the coefficients of the asymptotic series with minimal 
considerRtion of conditions at infinity. 

5. Summing a series of positive terms 

The choice of a method of summing a divergent series of positive terms depends on 
several considerations. 

First we assume that the series is asymptotic. Hence, if the terms rapidly decrease in 
size, the remainder after truncation is approximately equal to the first term omitted. We 
can also improve on this if the ratio of successive terms varies slowly along the series and 
is less than 1. We can then use some convergence speeding process such as the Aitken 
8 2  transformation. In any case, when A is small we sum the asymptotic series like any 
other convergent series. In our case, this occurs approximately for A <0.02 for the 
quartic and A < 0.15 for the cubic distortion. 

For intermediate values of A the early terms still decrease, then level off and grow 
without limit. Finally, if A is larger than approximately 0.4 in both cases, the terms grow 
from the start. 

Many of the rational transformations have singularities within the operating range 
of these series, and so cannot be used or must be modified. 
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For instance the Borel transformation 

as used successfully by Graffi eta1 (1970) on an alternating series could also be used on a 
series of positive terms. If the series C u,t"/n! can be analytically continued to 
moderately large t and has a simple pole in (0, CO), then the path of integration must be 
taken round the singularity and will yield a complex integral. This could be the complex 
eigenvalue we wish to evaluate. 

However, it was decided that it would be simpler to use two different models for the 
series for the intermediate range of A. These are the exponential integral, which is 
closely related to the Borel transformation, and a truncated binomial. In Drummond 
(1981) these two functions are proved to be asymptotically the same. Furthermore, 
when the truncated binomial was tested on one of Silverstone's series for the Stark 
effect, it gave a complex sum agreeing with both the real and imaginary parts of 
Hehenberger's complex eigenvalues calculated using Weyl's theory. This is more 
precise then Silverstone's truncation described in 0 4. 

The exponential integral. If the series behaves like the exponential integral, 
1 1  ( n  - l ) !  n !  e-"-' 

d t = - + T + .  . . + 7 + ( - 1 ) " + '  e-"Ei(x) = --I-" t X t n - ~  dt 
e-"-' 

x x  

where x is close to n, U ,  = ( n  - l ) ! /x"  and e-' is small, then the remainder integral is 

The first of these three integrals is approximately ( x - n ) ~ , ,  the second is [-f* 
i (n~ /2 ) "~]u ,  and the third is small. Hence the remainder near the smallest term is 
approximately 

u,[x - n  -$* i (n~ /2 ) "~] .  

If the sequence of terms is concave, the three smallest terms being uk-1, uk, uk+l, 
then we can substitute for x and n, so the sum of the series is 

The truncated binomial series. 
Let 

p + r + 2  z l+- z ( l + .  . .I)]} r + l  [ p::::' ( r + 3  
p + r  

= U ,  1+--2 l+- 
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If 2, is the tail of the series to be summed, we may match the first four items of the 
series (5) and (6) using the parameters p ,  r and z found from the equations 

and hence find T, using equation (4).  
If the series (6) is the tail of the exponential integral series, all the terms of the two 

series coincide in the limit r+m. Hence the limiting truncated binomial and the 
exponential integral agree. 

For the En(A) series, r was not a positive integer, so I relaxed equation ( 7 ) ,  chose 
r = 4,  8 ,  16, 32,  solved equations (8), (9) and ( 4 )  using (1 -z)-’ = ( z  - l)-’ eipp if z > 1, 
and extrapolated to zero error in the fourth term to find T,,. 

To estimate the error in this method this calculation was repeated for Tn+l and Tn+2. 
The series was then transformed by term splitting to 

S =  u ~ + u I + .  . . + U n - l + [ ( T n ) + ( U n - T n ) ] + [ ( T n + l ) + ( u n + l - T n + 1 ) 1  

+ [(Tn+l) + (14n-1-2- Tn+dI 

= u o + u l + .  ..+U,-1+Tn+u:+u:,l +. . .  
where U,* = U ,  - T, + Tn+l. This sums the series, while the last two terms are part of a 
new asymptotic series which can be used to judge the accuracy of the transformation. 

Both equations ( 3 )  and ( 4 )  were used near the smallest terms to sum the series for 
intermediate A when a smallest term was available. 

For the largest values of A the truncated binomial To together with U $  and U ?  were 
used and the calculated eigenvalues were rounded off larger than U :  and U:. 

The results of the truncated binomial calculations are listed in tables 4 ,  5, 6 and 7 .  
The calculations using equation ( 3 )  were also checked against these and found to 

agree for intermediate A where a minimum existed. 
In the case of the cubic distortion, it was speculated that the appropriate model of 

the asymptotic series which contains only even powers of A might be a truncated double 
binomial based on [(I + 2)’ + (1 - z)’]. However, the properties of this series are not 
fully developed in the first 20 terms of the cubic distortion series, and the single 
binomial series was found to fit better to these terms. Also the differences between the 
two calculations were less than the size of the terms in the transformed series. 

These calculations using perturbation series have not been rigorously justified. 
However, if the series are asymptotic then, for very small A, the error is comparable with 
the first term omitted and very accurate calculations may be made. For intermediate A ,  
the three models (exponential integral, truncated binomial and truncated double 
binomial) mutually agree and represent a significant improvement on truncation before 
the smallest term. 

For large A, where the first term is the smallest term, the calculations are self 
consistent. 
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Table 4. Real part of the energy levels for the oscillator with quartic distortion for negative 
A calculated by fitting a truncated binomial to the four smallest terms of the series. 

0 1  
0.01 0.992 363 220 6 
0.02 0.984 427 669 8 
0.03 0.976 146 197 4 
0.04 0.967 451 234 
0.05 0.958 233 36 
0.06 0.948 330 
0.07 0.937 582 
0.08 0.925 95 
0.09 0.913 55 
0.1 0.900 6 
0.12 0.8746 
0.15 0.839 
0.2 0.793 
0.25 0.76 
0.3 0.74 
0.4 0.72 
0.5 0.72 
0.6 0.72 
0.7 0.72 
0.8 0.73 
0.9 0.74 
1 0.75 

3 
2.961 401 903 5 
2.920 282 161 3 
2.875 948 30 
2.827 103 
2.771 26 
2.707 
2.636 
2.566 
2.50 
2.45 
2.35 
2.26 
2.18 
2.14 
2.1 
2.1 
2.2 
2.3 
2.3 
2.3 
2.4 
2 

5 
4.898 302 036 6 
4.786 335 05 
4.659 247 
4.504 5 
4.315 
4.12 
3.96 
3.83 
3.7 
3.7 
3.6 
3.5 
3.5 
3.5 
3.6 
4 
4 
4 
4 
4 
4 
4 

7 
6.801 432 758 5 
6.573 552 
6.291 08 
5.91 
5.54 
5.3 
5.1 
5.0 
4.9 
4.9 
4.8 
4.8 
4.8 
5 
5 
5 
6 
6 
6 
6 
6 
7 

9 
8.668 928 127 8 
8.268 8 
7.698 
7.05 
6.6 
6.4 
6.3 
6.3 
6.2 
6.2 
6.2 
6.3 
7 
7 
7 
7 
8 
8 
8 
9 
9 
9 

Table 5. Imaginary part of the energy levels in table 4. 

0 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.1 
0.12 
0.15 
0.2 
0.25 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

0.000 014 6 
0.000 119 
0.000 521 
0.001 54 
0.003 49 
0.006 6 
0.016 5 
0.039 
0.09 
0.14 
0.19 
0.27 
0.35 
0.42 
0.48 
0.53 
0.58 
0.62 

0.000 089 
0.001 54 
0.008 9 
0.027 
0.057 
0.10 
0.15 
0.25 
0.4 
0.7 
0.9 
1.1 
1.4 
1.7 
1.9 
2.1 
2.3 
2.5 
2.6 

0.000 054 
0.004 60 
0.042 
0.13 
0.27 
0.41 
0.56 
0.7 
1.0 
1.4 
1.9 
2.4 
2.7 
3.4 
3.8 
4 
5 
5 
5 
5 

0.002 35 
0.076 
0.3 1 
0.62 
0.9 
1.2 
1.5 
1.7 
2.2 
2.8 
3.6 
4.2 
4.8 
5.8 
6 
7 
8 
8 
9 
9 

0.000 04 
0.042 6 
0.41 
0.9 
1.5 
2.0 
2.4 
2.8 
3.1 
3.7 
4.5 
5.6 
6 
1 
8 
9 

10 
11 
12 
13  
13 
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Table 7. Imaginary part of the energy levels in table 6. 

Eo El E2 E3 E4 E5 

0.1 
0.12 
0.15 
0.2 
0.25 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

0.0002 0.03 
0.000 02 0.006 0.20 0.8 
0.0014 0.12 0.8 1.7 
0.013 0.35 1.3 2.4 
0.08 0.8 2.0 3.4 
0.18 1.2 2.6 4 
0.27 1.4 3 5 
0.34 1.7 3 5 
0.4 2 4 5 
0.5 2 4 6 
0.5 2 4 6 

0.34 
1.7 
2.8 
3.6 
4.8 
6 
6 
7 
7 
8 
8 

0.022 
0.98 
2.7 
4.0 
5.0 
6.4 
7.4 
8 
9 

10 
10 
11 
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